The three faces of metabolic syndrome

Robert H. Lustig, M.D., M.S.L. Division of Endocrinology, Department of Pediatrics Institute for Health Policy Studies University of California, San Francisco

Adjunct Faculty, UC College of the Law, San Francisco Adjunct Faculty, Touro University-California

AAP, Mar 9, 2023

Disclosures

I have the following financial relationships with the manufacturer(s) of commercial product(s) and provider of commercial services discussed in this CME activity:

Chief Medical Officer: BioLumen, Kalin Health, Foogal, Perfact Advisory Board: Levels Health, ReadOut Health, Simplex Health, Myka Bio

I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.

All relevant financial relationships have been reviewed and mitigated by AAP-OC Chapter's CME Committee.

Source: UN WPP (2022); Zijdeman et al. (2015); Riley (2005) OurWorldInData.org/life-expectancy • CC BY Note: Shown is the 'period life expectancy'. This is the average number of years a newborn would live if age-specific mortality rates in the current year were to stay the same throughout its life.

Source: UN WPP (2022); Zijdeman et al. (2015); Riley (2005) OurWorldInData.org/life-expectancy • CC BY Note: Shown is the 'period life expectancy'. This is the average number of years a newborn would live if age-specific mortality rates in the current year were to stay the same throughout its life.

<u>Tufts</u>

Only 7% of American Adults Have Good Cardiometabolic Health

FOLLOW TUFTS - SUBSCRIBE -

FOOD & NUTRITION

Only 7% of American Adults Have Good Cardiometabolic Health

Tufts researchers find that most U.S. adults rate poorly across five components of heart and metabolic health, with clear racial disparities

Life

74

Note: Shown is the 'period life expectancy'. This is the average number of years a newborn would live if age-specific mortality rates in the current year were to stay the same throughout its life.

Data source: OECD — Note: Health spending measures the consumption of health care goods and services, including personal health care (curative care, rehabilitative care, long-term care, ancillary services, and medical goods) and collective services (prevention and public health services as well as health administration), but excluding spending on investments. Shown is total health expenditure (financed by public and private sources). Licensed under CC-BY by the author Max Roser.

OurWorldinData.org - Research and data to make progress against the world's largest problems.

The money is not going to hospitals, physicians, or Big Pharma

The money is not going to hospitals, physicians, or Big Pharma It's going to chronic metabolic disease

CLINICAL PRACTICE GUIDELINE Guidance for the Clinician in Rendering Pediatric Care

American Academy of Pediatrics

DEDICATED TO THE HEALTH OF ALL CHILDREN*

Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity

Sarah E. Hampi, MD, FAAR,^a Sandra G. Hassink, MD, FAAR,^b Asheley C. Skinner, PhD, ^a Sarah C. Armstrong, MD, FAAR,^a Sarah E. Barlow, MD, MPH, FAAP,^a Christopher F. Bolling, MD, FAAR,^d Kimberly C. Avila Edwards, MD, FAAR,^a Inuoma Eneli, MD, MS, FAAR,^a Robin Hamre, MPH,¹ Madeline M. Joseph, MD, FAAR,^j Doug Lunsford, MEd,^a Eneida Miendonea, MD, PhD, FAAP,¹ Mare P. Michalsky, MD, MBA, RAAP,^a Natrat Mirza, MD, SeD, FAAR,^a Eduardo R. Ochoa, Jr, MD, RAP,^a Mona Sharifi, MD, MPH, FAAP,^a Amanda E. Stalano, PhD, MPP,^a Ashley E. Weedh, MD, MPH, FAAP,^a Susan K. Flinn, MA,^a Jeanne Lindros, MPH,^a Kyn ka Okechukwu, MPA^a

Hampl et al. Pediatrics 151: e2022060640, 2023

CLINICAL PRACTICE GUIDELINE Guidance for the Clinician in Rendering Pediatric Care

Sk News

New guidelines for treating childhood obesity include medications and surgery for first time

The guidelines say that pediatricians should offer weight-loss drugs for children age 12 and up with obesity.

Four drugs are now approved for obesity treatment in adolescents starting at age 12 – Orlistat, Saxenda, Qsymia and Wegovy – and one, phentermine, for teens age 16 and older. Another drug, called setmelanotide (brand name Imcivree), has been approved for kids age 6 and older who have Barde-Biedl syndrome, a genetic disease that causes obesity.

canon E. Barlow, MD, MPR, FAAP,⁶ Robin Hamne, MPH,¹ Madeline M. Joseph, MD, FAAP,¹ Doug Lunsford, MEd,⁴ Eneida Miendonica, MD, PhD, FAAP,⁶ Marc P. Michalsky, MD, MBA, RAP,⁶⁶ Nazrat, Mirza, MD, SoD, FAAP,⁶⁶ Eduardo R. Ochoa, Jr, MD, RAP,⁶ Mona Sharfi, MD, MPH, FAAP,⁶⁶ Amanda E. Staiano, PhD, MPP,⁶⁶ Ashley E. Weedh, MD, MPH, FAAP,⁶ Susan K. Flinn, MA,⁴ Jeianne Lindros, MPH,¹⁷ Kymika Okechukwu, MPA⁴⁶

Hampl et al. Pediatrics 151: e2022060640, 2023

The Fiction

"Beating obesity will take action by all of us, based on one simple *common sense* fact: All calories count, no matter where they come from, including Coca-Cola and everything else with calories..."

-The Coca Cola Company, "Coming Together", 2013

Obesity is the problem (?)

- Obesity is increasing worldwide by 2.78% per year 1975-2015 <u>Lancet Oct 10, 2017</u> <u>http://dx.doi.org/10.1016/S0140-6736(14)60460-8</u>
- Diabetes is increasing worldwide by **4.07% per year**
- 1980-2014 Lancet Apr 6, 2016
- <u>http://dx.doi.org/10.1016/S0140-6736(16)00618-8</u>

Secular trend in diabetes among U.S. adults, 1988-2012

Menke et al. JAMA 314:1021, 2015, doi:10.1001/jama.2015.10029

Secular trend in diabetes among U.S. adults, 1988-2012

Menke et al. JAMA 314:1021, 2015, doi:10.1001/jama.2015.10029

Secular trend in diabetes among U.S. adults, 1988-2012

Menke et al. JAMA 314:1021, 2015, doi:10.1001/jama.2015.10029

Meta-analysis: 25% of pediatric T2DM are normal weight

All studies

iource (Country)	Cases, No.	Total, No.	Prevalence (95% CI)		Weight Si
reas-sectional design					
Kitegewe et al. ³⁸ 1994 (Japan)	111	130	85.38 (78.74-90.99)		2.0
Pinhas-Hamiel et al, ³⁸ 1995 (US)	50	54	92.59 (83.80-98.35)		1.9
Scott et al, ⁴⁰ 1997 (US)	42	49	85.71 (74.33-94.33)		1.9
Glaser and Jones, ⁴¹ 1998 (US)	9	18	50.00 (26.81-73.19)		1.5
Remechandren et al, ⁴² 2003 (India)	9	18	50.00 (26.81-73.19)		1.5
Upchurch et al. ⁴² 2003 (US)	91	98	92.86 (86.79-97.25)		2.0
Wei et al, ⁴⁴ 2003 (Tatwan)	63	131	48.09 (39.56-56.68)		2.0
Ehtishem et al, ⁴⁵ 2004 (UK)	18	25	72.00 (52.55-88.15)		1.7
Campbell-Stokes and Taylor, 45 2005 (New Zealand)	11	12	91.67 (67.61-100.00)		1.3
Reinehr et al. ⁴⁷ 2005 (Germany)	14	16	87.50 (65.90-99.73)		1.5
Eppera et al, ⁴⁸ 2006 (Weatern Pacific)	106	331	32.02 (27.10-37.16)	-	2.1
Farrah et al. ⁴⁹ 2006 (US)	29	40	72.50 (57.49-85.39)		1.8
Huang et al. ⁵⁰ 2005 (Taiwan)	15	22	68.18 (47.00-86.28)		1.6
Fortmeler-Saucier et al, ¹² 2008 (US)	44	49	89.80 (79.50-96.99)		1.9
Lawrence et al. ⁵¹ 2008 (US)	401	520	77.12 (73.40-80.63)	+	2.1
Shige and Kikuchi, ⁵⁵ 2009 (Japan)	28	43	65.12 (50.15-78.76)	+	1.8
Unskami et al, ⁵⁵ 2009 (Japan)	93	112	83.04 (75.47-89.48)		2.0
Arned et al, ⁵⁷ 2012 (Canada)	211	221	95.48 (92.28-97.88)		2.1
Zabeen et al, ⁵⁸ 2016 (Bangladeah)	45	77	58.44 (47.21-69.26)		2.0
Ludwig et al. ⁶⁰ 2021 (Australia and New Zealand)	199	260	76.54 (71.18-81.50)	+	2.1
Abaeffer et al., ⁶¹ 2020 (Ireq)	16	16	100.00 (89.52-100.00)		1.5
Shilbayeh, ⁶² 2022 (Saudi Arabia)	38	49	77.55 (64.69-88.29)		1.9
Xu et al, ^{E2} 2021 (China)	89	153	58.17 (50.24-65.89)		1.5
Total (95% CI)		2444	76.27 (67.04-84.46)	\$	42.2
Heterogeneity: x ² = 0.0535; x ² 22 = 494.87 (P<.001); I ² = 962	K				
letrospective cohort					
Dean et al, ⁶⁴ 1992 (Canada)	9	20	45.00 (23.57-67.36)		1.6
Coddington and Hisnanick, ⁶⁵ 2001 (US)	18	22	81.82 (62.53-95.64)		1.6
Zdravkovic et al, ⁶⁷ 2004 (Canada)	33	41	80.49 (66.77-91.39)		1.8
Scott et al, ^{GI} 2004 (New Zealand)	13	13	100.00 (87.18-100.00)		1.4
Pérez-Perdomo et al. ⁶⁰ 2005 (Puerto Rico)	69	86	80.23 (71.08-88.04)		2.0
Sugihera et al, ⁷⁰ 2005 (Japan)	179	256	69.92 (64.15-75.40)		2.1
Sellers et al, ⁷¹ 2007 (Canada)	38	99	38.38 (29.01-48.20)		2.0
Beleventhinen et al, ⁷² 2012 (UK)	23	39	58.97 (43.05-74.03)		1.8
Fu et al, ⁷² 2013 (China)	248	349	71.06 (66.18-75.71)		2.1
Osmen et al. 78 2013 (Sudan)	29	38	76.32 (61.34-88.68)		1.8
Heynes et al. ⁷⁵ 2014 (Australia)	82	135	60.74 (52.34-68.84)		2.0
Newton et al, 76 2015 (New Zoaland)	22	23	95.65 (82.27-100.00)	→	1.6
Abbasi et al, 77 2017 (UK)	308	654	47.09 (43.28-50.93)	+	2.1
Morrison et al, 78 2018 (UK)	9	18	50.00 (26.81-73.19)		1.5
Greenup et al, ⁸⁰ 2020 (UK)	40	42	95.24 (86.18-99.92)	-	1.8
Van Norme et al, 79 2020 (US)	909	998	91.08 (89.23-92.78)		2.1
Antuchillo et al, ⁸¹ 2021 (US)	295	333	88.59 (84.94-91.80)	+	2.1
Marks et al, ⁸² 2021 (US)	126	171	73.68 (66.80-80.03)		2.1
Tung et al, ^{EI} 2021 (Hong Kong)	308	391	78.77 (74.57-82.69)	-	2.1
Kim et al, ⁸⁴ 2020 (US)	237	296	80.07 (75.31-84.43)	-	2.1
Schmitt et al, ⁸⁵ 2022 (US)	474	615	77.07 (73.66-80.31)	+	2.1
Zuckermen Levin et al, ⁸⁶ 2022 (larael)	278	360	77.22 (72.74-81.42)	~	2.1
Total (95% CI) Heterogeneity: x ² =0.0314; x ² ₂₁ =586.32 (P<.001); I ² =962		4999	75.18 (67.92-81.81)		42.0

Stratified by race

Source (Country)	Cases, No.	Tosal, No.	Prevalence (95% CI)				Weig %
White pareicipanes						1	
Reinehr et al, 47 2005 (Germany)	14	16	87.50 (65.90-99.73)				- 3.0
Bell et al, ⁵² 2009 (US)	83	105	79.05 (70.69-86.35)		\frown	+	3.9
Arned et al, 57 2012 (Canada)	56	57	98.25 (92.62-100.00)			_ _	3.7
Zabeen et al, ⁵⁸ 2016 (Bangladesh)							
Total (95% CI)		178	89.86 (71.50-99.74)			•	10.6
Heerogeneixy: 1 ² = 0.0339; 15.24 (P < .001); 1 ² = 87%							
African American and African Canadian participanes							
Zdravkovic et al, 67 2004 (Canada)	9	11	81.82 (52.65-99.53)		-		- 27
Liu et al., ⁵³ 2009 (US)	111	133	83.46 (76.62-89.33)				3.9
Total (95% CI)		144	84.47 (77.64-90.37)		ΑΑ		6.6
Heterogeneixy: x ² = 0; χ ² = 0.11 (P = .75); I ² = 0%				- 4			
Aiddle Eastern participants							
Given and Demir Gokce, ⁹¹ 2016 (Turkey)	53	84	63.10 (52.46-73.14)		-		3.8
AlsaHar et al. 61 2020 (Iraq)	16	16	100.00 (89.52-100.00)				3.0
Shilbayeh, ⁶² 2022 (Saudi Arabia)	38	49	77.55 (64.69-88.29)				3.6
Total (95% CI)		149	82.19 (58.89-97.46)				10.5
Heterogeneixy: 1 ² =0.0419; <u>y</u> 3=16.23 (P<.001); P=88%							
lispanic or Latino participants							
Glaser and Jones, 41 1998 (US)	6	12	50.00 (21.60-78.40)				2.8
Foremolor-Saucior et al. 59 2008 (US)	44	49	89.80 (79.50-96.99)		-		3.6
Liu et al. 53 2009 (US)	113	133	84.96 (78.34-90.58)				3.9
Total (95% CI)		194	81.30 (65.32-93.46)			•	10.3
Heterogeneixy: t ² =0.0168; yg=8.12 (P = .02); I ² =75%						-	
ndigenous participants							
Dean et al. ⁶⁴ 1992 (Canada)	9	20	45.00 (23.57-67.36)			<u> </u>	3.2
Coddington and Hisnanick, 65 2001 (US)	18	22	81.82 (62.53-95.64)				3.2
Liu et al. 53 2009 (US)	59	78	75.64 (65.44-84.60)	1			3.8
Arred et al, 57 2012 (Canada)	92	100	92.00 (85.76-96.64)				3.9
Total (95% CI)		220	76.73 (57.47-91.73)			•	14.1
Heterogeneity: 12=0.0350; x1=23.25 (P<.001); P=87%						T.	
Islan pareicipanes							
Kitagawa et al. ³⁸ 1994 (Japan)	111	130	85.38 (78.74-90.99)				3.9
Ramachandran et al. ⁴² 2003 (India)	9	18	50.00 (26.81-73.19)				3.1
Wei et al, 44 2003 (Taiwat)	63	131	48.09 (39.56-56.68)			-	3.9
Zdravkovic et al. 67 2004 (Canada)	14	19	73.68 (51.25-91.46)			_	3.1
Sugihara et al, 70 2005 (Japan)	179	256	69.92 (64.15-75.40)			- H	4.0
Eppens et al. ⁴⁸ 2006 (Western Pacific)	97	320	30.31 (25.39-35.47)		— —	-	4.0
Huang et al, ⁵⁰ 2006 (Taiwan)	15	22	68.18 (47.00-86.28)		Δ _		3.2
Shiga and Kikuchi, ⁵⁵ 2009 (Japan)	28	43	65.12 (50.15-78.76)		~		3.6
Liu et al. 53 2009 (US)	22	31	70.97 (53.58-85.81)			-	3.4
Urakami et al. 55 2009 (Japan)	93	112	83.04 (75.47-89.48)				3.0
Fu et al. 77 2013 (China)	248	340	71.06 (66.18-75.71)				4.0
Zabeen et al. ⁵⁸ 2016 (Bangladesh)	45	77	58.44 (47.21-69.26)		_	<u> </u>	3.8
Xu et al. 63 2021 (China)	89	153	58.17 (50.24-65.89)		_	_	3.9
Total (95% CI)	0.9	1661	64.50 (53.28-74.99)				47.9
Hererogeneixy: 1 ² =0.0379; <u>1</u> 2=231.02 (P<.001); 1 ² =95%		1001	Auge (1976-1478)			~	47.3
Total (95% CI)		2546	74.04 (66.33-81.10)				100
Total (95% C) Heterogeneity: T ² = 0.0427; $\chi^2_{1/2}$ = 433.70 (P < .001); I ² = 94%		4546	74.04 (66.33-81.10)				100.
manufaments is a construction approach a 2001 (is a 248				<u> </u>	20 40	50 80 1	00

Cioana et al. JAMA Network Open 5(12):e2247186, 2022

THE LITTLE WOMEN OF LOJA — GROWTH HORMONE-RECEPTOR DEFICIENCY IN AN INBRED POPULATION OF SOUTHERN ECUADOR

ARLAN L. ROSENBLOOM, M.D., JAIME GUEVARA AGUIRRE, M.D., RON G. ROSENFELD, M.D., AND PAUL J. FIELDER, PH.D.

Rosenbloom et al. NEJM 323:1367, 1990; Guevarre-Aguirre et al. Sci Trans Med 3:70ra13, 2011

The Little Women of Loja are obese yet insulin sensitive

 Table 1.
 Anthropometric Data, Lipid Metabolism, Carbohydrate Metabolism, and Insulin Sensitivity Measures for
 35 Controls and 27 GHRD Subjects

	Controls	GHRD	Р
Anthropometrics			
Age, y	39.8 (13)	34.5 (11)	.09
SDS ht	-1.7 (1.2)	-7.4 (1.2)	<.0001
BMI, kg/m ²	29.4 (4.4)	27.6 (5.6)	.16
A/G fat	1.08 (0.18)	1.07 (0.09)	.79
% Fat	41.1 (6.6)	47.7 (8.9)	.0014
L/F	1.48 (0.47)	1.18 (0.48)	.016
Lipids			
Total C, mg/dL	199 (43.9)	229 (47.3)	.0124
HDL, mg/dL	43.5 (13.7)	50.9 (12.8)	.034
HDL-C, mg/dL	4.87 (1.33	4.65 (1.10)	.49
LDL, mg/dL	123.1 (37.5)	157.6 (37.4)	<.0001
Apo A, g/L	1.24 (0.23)	1.34 (0.23)	.0007
Apo B, g/L	0.95 (0.24)	1.085 (0.23)	.029
VLDL, mg/dL	31.5 (18.7)	20.2 (7.6)	.0044
TG, mg/dL	158.3 (95.3)	100.7 (37.8)	.0001
Carbohydrate metabolism, adipocytokines			
Fasting glucose, mg/dL	93.2 (22.4)	88.6 (10.6)	.34
Postprandial glucose, mg/dL	94.1 (35.4)	77.1 (13.4)	.027
Fasting insulin, μ U/mL	13.8 (15.5)	4.29 (0.74)	.0034
HOMA2%B	141 (103)	90 (48)	.0206
HOMA2%S	108 (87)	261 (133)	<.0001
HOMA2-IR	1.74 (1.84)	0.59 (0.51)	.0025
Leptin, ng/mL	10.36 (5.24)	7.32 (4.7)	.0212
Adiponectin, mg/L	6.92 (4.41)	9.94 (4.84)	.0128
HMW adiponectin, mg/L	4.29 (2.89)	7.59 (4.07)	.0004

Abbreviations: SDS ht, SD score for height; C, cholesterol. Data are shown as mean (SD). Conversion factors: glucose to mmol/L, multiply by 0.0555; insulin to pmol/L, multiply by 6.945; LDL and VLDL to mmol/L, multiply by 0.0259; TGs to mmol/ L, multiply by 0.0113.

Guevarre-Aguirre et al. J Clin Endo Metab 100:2589, 2015

The Little Women of Loja are obese yet insulin sensitive

 Table 1.
 Anthropometric Data, Lipid Metabolism, Carbohydrate Metabolism, and Insulin Sensitivity Measures for
 35 Controls and 27 GHRD Subjects

	Controls	GHRD	Р
Anthropometrics			
Age, y	39.8 (13)	34.5 (11)	.09
SDS ht	-1.7 (1.2)	-7.4 (1.2)	<.0001
BMI, kg/m ²	29.4 (4.4)	27.6 (5.6)	.16
A/G fat	1.08 (0.18)	1.07 (0.09)	.79
% Fat	41.1 (6.6)	47.7 (8.9)	.0014
L/F	1.48 (0.47)	1.18 (0.48)	.016
Lipids			
Total C, mg/dL	199 (43.9)	229 (47.3)	.0124
HDL, mg/dL	43.5 (13.7)	50.9 (12.8)	.034
HDL-C, mg/dL	4.87 (1.33	4.65 (1.10)	.49
LDL, mg/dL	123.1 (37.5)	157.6 (37.4)	<.0001
Apo A, g/L	1.24 (0.23)	1.34 (0.23)	.0007
Apo B, g/L	0.95 (0.24)	1.085 (0.23)	.029
VLDL, mg/dL	31.5 (18.7)	20.2 (7.6)	.0044
TG, mg/dL	158.3 (95.3)	100.7 (37.8)	.0001
Carbohydrate metabolism, adipocytokines			
Fasting glucose, mg/dL	93.2 (22.4)	88.6 (10.6)	.34
Postprandial glucose, mg/dL	94.1 (35.4)	77.1 (13.4)	.027
Fasting insulin, μ U/mL	13.8 (15.5)	4.29 (0.74)	.0034
HOMA2%B	141 (103)	90 (48)	.0206
HOMA2%S	108 (87)	261 (133)	<.0001
HOMA2-IR	1.74 (1.84)	0.59 (0.51)	.0025
Leptin, ng/mL	10.36 (5.24)	7.32 (4.7)	.0212
Adiponectin, mg/L	6.92 (4.41)	9.94 (4.84)	.0128
HMW adiponectin, mg/L	4.29 (2.89)	7.59 (4.07)	.0004

Abbreviations: SDS ht, SD score for height; C, cholesterol. Data are shown as mean (SD). Conversion factors: glucose to mmol/L, multiply by 0.0555; insulin to pmol/L, multiply by 0.945; LDL and VLDL to mmol/L, multiply by 0.0259; TGs to mmol/ L, multiply by 0.0113.

Guevarre-Aguirre et al. J Clin Endo Metab 100:2589, 2015

Familial Partial Lipodystrophy: Dunningan or Type 2

Peters, et al. Nature Genetics. 18:292-5, 1998

X-linked or autosomal dominant
Absence of limb fat

Easily visible veins
Defined musculature

Normal or excess facial fat
Cushingoid facies (moon facies)
Dorsocervical fat pad
Acanthosis nigricans

"Exclusive" view of obesity and metabolic dysfunction

"Exclusive" view of obesity and metabolic dysfunction

"Exclusive" view of obesity and metabolic dysfunction

Relation between visceral and subcutaneous obesity: TOFI (thin on the outside, fat on the inside)

Thomas et al. Obesity doi: 10.1038/oby.2011.142, 2011

Obesity is not the problem

Obesity is not the problem

Metabolic Syndrome: where all the money goes (75% of all healthcare dollars)

Obesity is not the problem

Metabolic Syndrome: where all the money goes (75% of all healthcare dollars)

> Diabetes Hypertension Lipid abnormalities Cardiovascular disease Non-alcoholic fatty liver disease Polycystic ovarian disease Cancer Dementia

Metabolic syndrome is difficult to define in adults

- WHO 1998 AACE 2003
- EGIR 1998 IDF 2005
- NCEP/ATPIII 2001 AHA 2005

Metabolic syndrome is difficult to define in adults

- WHO 1998 AACE 2003
- EGIR 1998 IDF 2005
- NCEP/ATPIII 2001 AHA 2005

And even more difficult to define in children

AHA Scientific Statement

Progress and Challenges in Metabolic Syndrome in Children and Adolescents

A Scientific Statement From the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism

Julia Steinberger, MD, MS, Chair; Stephen R. Daniels, MD, PhD, FAHA; Robert H. Eckel, MD, FAHA; Laura Hayman, PhD, RN, FAHA; <u>Robert H. Lustig, MD</u>; Brian McCrindle, MD, MPH, FAHA; Michele L. Mietus-Snyder, MD

Circulation 119:628, 2009

Because each of these definitions sought to define the

metabolic syndrome phenomenologically, with cutoffs

Because each of these definitions sought to define the metabolic syndrome phenomenologically, with cutoffs

It is easier to define the metabolic syndrome mechanistically

Where's the insulin resistance?

OGTT in 'healthy' volunteers from ~1970 till 2014

OGTT in 'healthy' volunteers from ~1970 till 2014

The standard model of insulin resistance

Medscape®

www.medscape.com

Source: Clin Endocrinol © 2005 Blackwell Publishing

The standard model of insulin resistance

Medscape®

www.medscape.com

Source: Clin Endocrinol © 2005 Blackwell Publishing

The standard model of insulin resistance

Medscape®

www.medscape.com

Subcutaneous Fat

Relationship between BMI and insulin sensitivity (N=220)

Insulin sensitivity/resistance is more determinant of morbidity and mortality than obesity/normal weight

Meigs et al. J Clin Endocrinol Metab 97:2906, 2006

Calgori et al. Diab Care 34:210, 2011

Ectopic Fat: Familial Partial Lipodystrophy

•X-linked or autosomal dominant Absence of limb fat ✓ Easily visible veins ✓ Defined musculature Minimal visceral fat Normal or excess facial fat Cushingoid facies (moon facies) Dorsocervical fat pad Acanthosis nigricans Metabolic Syndrome

Peters et al. Nature Genet 18:292, 1998

Comparison between lipodystrophy and obesity

Comparison between lipodystrophy and obesity

So the metabolic syndrome can arise from too much, or too little fat i.e. it's not the fat that counts

Asterholm et al. Drug Disc Today Dis Models 4:17, 2007

Obesity and lipodystrophy share insulin resistance

Chehab, Endocrinol 149:925, 2008

Intrahepatic fat explains metabolic perturbation better than visceral fat

Fabbrini et al. Proc Natl Acad Sci 106:15430, 2009

Obese Low Liver Fat = 2.6%

Obese Low Liver Fat = 2.6%

Obese Low Liver Fat = 2.6% Obese High Liver Fat = 24%

Obese Low Liver Fat = 2.6% Obese <u>High Liver</u> Fat = 24%

Obese Low Liver Fat = 2.6% Obese High Liver Fat = 24% Thin High Liver Fat = 23%

Obese Low Liver Fat = 2.6% Obese High Liver Fat = 24% Thin High Liver Fat = 23%

NAFLD is a worldwide problem, even in normal weight people

Study	Country	n	Mode of diagnosis	NAFLD prevalence BMI <25	NAFLD prevalence BMI >25
Younossi et al.2012	United States	11,613	Ultrasound	9.6%	28.8%
Xu et al.2013	China	6,905	Ultrasound	7.2%	Not studied
Das et al.2010	India	1,911	Ultrasound/CT	5.1%	31.7%
Kwon et al.2012	Korea	29,994	Ultrasound	12.6%	50.1%
Bellentani et al.2000	Italy	257	Ultrasound	16.4%	75.8%
Sinn et al.2012	Korea	5,878	Ultrasound	27% (BMI 20-25) 16% (BMI <20)	Not studied
Wei et al.2015	Hong Kong	911	Magnetic Resonance	19.3%	60.5%
Kumar and Mohan, J Clin Trans Hepat 5:216, 2017					

NAFLD is associated with diabetes, even in normal weight people

Loomis et al. J Clin Endocrinol Metab. 101:945, 2016

GASTROENTEROLOGY

Article | Published: 08 June 2018

NASH Leading Cause of Liver Transplant in Women: Updated Analysis of Indications For Liver Transplant and Ethnic and Gender Variances

Mazen Noureddin MD, MHSc[™], Aarshi Vipani MD, Catherine Bresee MS, Tsuyoshi Todo MD, Irene K. Kim MD, Naim Alkhouri MD, Veronica Wendy Setiawan PhD, Tram Tran MD, Walid S. Ayoub MD, Shelly C. Lu MD, Andrew S. Klein MD, Vinay Sundaram MD & Nicholas N. Nissen MD

The American Journal of Gastroenterology (2018) Download Citation 🚽

Insulin Receptor Knockouts (IRKO) Kahn Lab, Joslin 1998-present

Obesity, Metabolic Syndrome Liver (LIRKO) Brain (NIRKO)

Protected from Obesity Muscle (MIRKO) White Adipose Tissue (FIRKO) Brown Adipose Tissue (BATIRKO) β-cell (βIRKO) Vascular Smooth Muscle (VSMCIRKO) Glomerular Podocyte (PODIRKO)

Biddinger and Kahn, Ann Rev Physiol 68:123, 2006

Insulin has two effects on the liver

Brown and Goldstein, Cell Metab 7:95, 2008

Result: Obesity

Hyperglycemia, hyperinsulinemia, DM Low TG, VLDL Normal BP NOT Metabolic Syndrome

Result: Obesity

Hyperglycemia, hyperinsulinemia, DM High TG, VLDL Low BP Metabolic Syndrome

In order to explain Metabolic Syndrome:

- We are looking for a ubiquitous factor that
 - promotes obesity (preferably visceral)
 - promotes hypertension
 - induces selective hepatic insulin resistance
 - blocks Foxo1 to promote gluconeogenesis (hyperglycemia, hyperinsulinemia, and diabetes)
 - stimulates *de novo* lipogenesis (dyslipidemia, atherosclerosis)

SWEET AND VICIOUS

New York Times, April 17, 2011

Nature 487:27-29, Feb 1, 2012

COMMENT

ECOLOGY Komodo dragons and elephants could reduce fire risk in Australia **1.30** NEUROSCIENCE The source of the self is in the brain's wiring, not individual neurons **p.31**

e LITERATURE How Charles Dickens drew on science, but left room for wonder **p.32** OBITUARY Philip Lawley and the discovery that DNA damage can cause cancer **p.36**

The toxic truth about sugar

Added sweeteners pose dangers to health that justify controlling them like alcohol, argue Robert H. Lustig, Laura A. Schmidt and Claire D. Brindis.

NOVA I

NOVA I

NOVA II

NOVA II

NOVA III

NOVA I

NOVA III

NOVA II

NOVA IV

NOVA III

Only NOVA IV correlates with chronic disease

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Original article

Consumption of <u>ultra-processed foods</u> associated with weight gain and <u>obesity</u> in adults: A multi-national cohort study

Reynalda Cordova ^{a, b}, Nathalie Kliemann ^a, Inge Huybrechts ^a, Fernanda Rauber ^{c, d}, Eszter P. Vamos ^e, Renata Bertazzi Levy ^{c, d}, Karl-Heinz Wagner ^b, Vivian Viallon ^a, Corinne Casagrande ^a, Geneviève Nicolas ^a, Christina C. Dahm ^f, Jie Zhang ^f, Jytte Halkjær ^g, Anne Tjønneland ^{g, h}, Marie-Christine Boutron-Ruault ^{i, j}, Francesca Romana Mancini ^{i, j}, Nasser Laouali ^{i, j}, Verena Katzke ^k, Bernard Srour ^k, Franziska Jannasch ^{l, m, n}, Matthias B. Schulze ^{l, o}, Giovanna Masala ^p, Sara Grioni ^q, Salvatore Panico ^r, Yvonne T. van der Schouw ^s, Jeroen W.G. Derksen ^s, Charlotta Rylander ^t, Guri Skeie ^t, Paula Jakszyn ^{u, v}, Miguel Rodriguez-Barranco ^{w, x, y}, José María Huerta ^{z, aa}, Aurelio Barricarte ^{y, ab, ac}, Lousie Brunkwall ^{ad}, Stina Ramne ^{ad}, Stina Bodén ^{ae}, Aurora Perez-Cornago ^{af}, Alicia K. Heath ^e, Paolo Vineis ^e, Elisabete Weiderpass ^a, Carlos Augusto Monteiro ^{c, d}, Marc J. Gunter ^a, Christopher Millett ^e, Heinz Freisling ^{a, *}

Article Ultra-Processed Food Consumption Associated with Incident Hypertension among Chinese Adults—Results from China Health and Nutrition Survey 1997–2015

Ming Li^{1,*} and Zumin Shi²

Research

JAMA Internal Medicine | Original Investigation

Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort

Bernard Srour, PharmD, MPH, PhD; Léopold K. Fezeu, MD, PhD; Emmanuelle Kesse-Guyot, MSc, PhD; Benjamin Allès, PhD; Charlotte Debras, MSc; Nathalie Druesne-Pecollo, PhD; Eloi Chazelas, MSc; Mélanie Deschasaux, MSc, PhD; Serge Hercberg, MD, PhD; Pilar Galan, MD, PhD; Carlos A. Monteiro, MD, PhD; Chantal Julia, MD, MPH, PhD; Mathilde Touvier, PhD, MSc, MPH European Journal of Public Health, Vol. 32, No. 5, 779-785

© The Author(s) 2022. Published by Oxford University Press on behalf of the European Public Health Association. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://doi.org/10.1093/eurpub/ckac104 Advance Access published on 25 August 2022

Associations of <u>ultra-processed food</u> consumption with <u>cardiovascular disease</u> and all-cause mortality: UK Biobank

Xuanli Chen (), Jiadong Chu, Wei Hu, Na Sun, Qida He, Siyuan Liu, Zhaolong Feng, Tongxing Li, Qiang Han, Yueping Shen

British Journal of Nutrition, page 1 of 9 © Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Association between <u>ultra-processed foods</u> consumption and risk of <u>non-alcoholic fatty liver disease</u>: a population-based analysis of NHANES 2011–2018

Zhening Liu, Hangkai Huang, Yan Zeng, Yishu Chen and Chengfu Xu* Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, People's Republic of China

RESEARCH

Open Access

<u>Ultra-processed food</u> consumption and <u>metabolic syndrome</u>: a cross-sectional study in Quilombola communities of Alagoas, Brazil

Lídia Bezerra Barbosa^{1,2}, Nancy Borges Rodrigues Vasconcelos¹, Ewerton Amorim dos Santos³, Tamara Rodrigues dos Santos¹, Thays Ataide-Silva² and Haroldo da Silva Ferreira^{2*}

Consumption of <u>ultra-processed foods</u> and <u>cancer</u> risk: results from NutriNet-Santé prospective cohort

Thibault Fiolet,¹ Bernard Srour,¹ Laury Sellem,¹ Emmanuelle Kesse-Guyot,¹ Benjamin Allès,¹ Caroline Méjean,² Mélanie Deschasaux,¹ Philippine Fassier,¹ Paule Latino-Martel,¹ Marie Beslay,¹ Serge Hercberg,^{1,4} Céline Lavalette,¹ Carlos A Monteiro,³ Chantal Julia,^{1,4} Mathilde Touvier¹

Subscribe My Alerts Log in

The most widely read and highly cited peer-reviewed neurology journal

Home Latest Articles Current Issue Past Issues Neurology Video Journal Club Residents & Fellows

^E September 06, 2022; 99 (10) **RESEARCH ARTICLES**

Association of <u>Ultraprocessed Food</u> Consumption With Risk of <u>Dementia</u> A Prospective Cohort Study

Huiping Li, Shu Li, Hongxi Yang, Yuan Zhang, Shunming Zhang, Yue Ma, Yabing Hou, Xinyu Zhang, Kaijun Niu, Yan Borné, Yaogang Wang First published July 27, 2022, DOI: https://doi.org/10.1212/WNL.0000000000000200871

American Journal of Preventive Medicine

GLOBAL HEALTH PROMOTION AND PREVENTION

Premature Deaths Attributable to the Consumption of Ultraprocessed Foods in Brazil

Eduardo A.F. Nilson, ScD,^{1,2} Gerson Ferrari, PhD,³ Maria Laura C. Louzada, PhD,⁴ Renata B. Levy, PhD,⁵ Carlos A. Monteiro, PhD,¹ Leandro F.M. Rezende, ScD⁶

Nutrition

'Ultra-processed' products now half of all UK family food purchases

Exclusive: health experts warn increasing popularity of industriallymade food will lead to negative effects such as obesity and poor health

▲ Some of the UK's best-selling ultra-processed foods. Photograph: Jill Mead for the Guardian

Sarah Boseley Health editor

doi: 10.1101/2021.05.22.21257615

healthline Health Conditions <</th> Discover <</th> Plan <</th> Connect <</th> NUTRITION Special Diets Healthy Eating Food Freedom Conditions Feel Good Food Products Vital

Americans Are Eating More Ultra-Processed Foods: How to Cut Down on Them

Fast food such as hamburgers are among the ultra-processed foods that people are eating more often. Evrim Ertik/Getty Images

57% of US consumption 73% of the US food supply

Detrimental Effects of Fructose

Sugar is toxic unrelated to calories

Original Article PEDIATRIC OBESITY Obesity

Isocaloric Fructose Restriction and Metabolic Improvement in Children with Obesity and Metabolic Syndrome

Robert H. Lustig¹, Kathleen Mulligan^{2,3}, Susan M. Noworolski⁴, Viva W. Tai², Michael J. Wen², Ayca Erkin-Cakmak¹, Alejandro Gugliucci³, and Jean-Marc Schwarz⁵

Lustig et al. Obesity 24:453, 2016

Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome

Alejandro Gugliucci ^{a, *}, Robert H. Lustig ^b, Russell Caccavello ^a, Ayca Erkin-Cakmak ^b, Susan M. Noworolski ^d, Viva W. Tai ^c, Michael J. Wen ^c, Kathleen Mulligan ^{a, c}, Jean-Marc Schwarz ^e

Gugliucci et al. Atherosclerosis 253:171, 2016

Effects of Dietary Fructose Restriction on Liver Fat, De Novo Lipogenesis, and Insulin Kinetics in Children With Obesity

Jean-Marc Schwarz,^{1,2} Susan M. Noworolski,³ Ayca Erkin-Cakmak,⁴ Natalie J. Kom,³ Michael J. Wen,² Miva W. Taj,⁵ Grace M. Jones,¹ Sergiu P. Palij,¹ Moises Velasco-Alin,^{1,2} Karen Pan,² Bruce W. Patterson,⁶ Alejandro Gugliucci,¹ Robert H. Lustig,⁴ and Kathleen Mulligan^{1,2}

Schwarz et al. Gastroenterology 153:743, 2017

Strategy

- Isocaloric fructose restriction x 9 days in children who are habitual sugar consumers
- No change in weight
- Substitute complex carbs for sugar
- Maintain baseline macronutrient composition of the the diet
- Study in PCRC at Day 0 and Day 10
- Assess changes in organ fat, *de novo* lipogenesis, and metabolic health

Fasting Labs

	Day 0	Day 10	β-coefficient (Adjusted Change) [95% CI]	p value
Heart rate (bpm)	83.1 ± 10.7	80.1 ± 11.3	-2.8 [-6.5, +0.9]	0.13
Systolic BP (mmHg)	122.6 \pm 10.5	121.1 \pm 9.9	- 1.39 [-4.9, +2.1]	0.43
Diastolic BP	68.8 ± 8.9	63.7 ± 7.5	- 4.9 [-8.1, -1.8]	0.003
Fasting lactate (mmol/L)	1.2 ± 0.4	0.9 ± 0.3	-0.3 [-0.5, -0.2]	<0.001
Lactate AUC (mM/120 min)	160.0 \pm 34.5	129.0 \pm 34.5	-31.2 [-41.9, -20.5]	<0.001
HOMA-IR [¥]	7.9 \pm 4.8	5.2 \pm 2.6	-2.7 [-3.8, -1.5]	<0.001
AST (U/L) *	27.4 ± 14.1	23.8 ± 8.9		0.02
ALT (U/L) [¥]	$\textbf{28.9} \pm \textbf{22.8}$	$\textbf{26.7} \pm \textbf{19.6}$	-2.2 [-4.7, +0.3]	0.09
Fasting TG (mM)	1.4 \pm 0.9	1.0 \pm 0.5	-0.4 [-0.6, -0.2]	0.002
Fasting LDL-C (mM)	2.4 ± 0.6	2.1 ± 0.6	-0.3 [-0.4, -0.1]	<0.001
Fasting HDL-C (mM)	1.2 ± 0.2	1.0 ± 0.2	-0.1 [-0.2, -0.1]	<0.001
Fasting FFA (mM)	0.6 ± 0.2	0.7 ± 0.2	+0.1 [+0.1, +0.2]	<0.001

DNL is the Conversion of Dietary Carbohydrates into Lipids

DNL AUC Pre and Post Fructose Restriction

DNL (%)

Endocrine Society, March 5, 2015

Oral glucose tolerance test before and after isocaloric fructose restriction

Lustig et al. Obesity Society Nov. 4, 2015

Changes in liver, visceral, and subcutaneous fat (n = 37)

Independent Confirmation

This Issue Views 5,870 | Citations 0 | Altmetric 389

Preliminary Communication

January 22, 2019

Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys A Randomized Clinical Trial

Jeffrey B. Schwimmer, MD^{1,2}; Patricia Ugalde-Nicalo, MD¹; Jean A. Welsh, PhD, MPH, RN^{3,4,5}; et al

Author Affiliations

JAMA. 2019;321(3):256-265. doi:10.1001/jama.2018.20579

Fructose reduces liver mitochondrial function, while glucose stimulates it

"The most important takeaway of this study is that high fructose in the diet is bad," says Dr. Kahn. "It's not bad because it's more calories, but because it has effects on liver metabolism to make it worse at burning fat. As a result, adding fructose to the diet makes the liver store more fat, and this is bad for the liver and bad for whole body metabolism."

Dr. C. Ronald Kahn, CEO, Joslin Diabetes Center

A different model of insulin resistance

A different model of insulin resistance

A different model of insulin resistance

Sugar is the payload

Ultraprocessed food is the vehicle

biotechne Metabolic Syndrome Signaling

Robert H. Lustig, MD, MSL, Professor of Pediatrics, University of California, San Francisco, CA and Alejandro Gugliucci, MD, PhD, Professor of Biochemistry and Associate Dean of Research, Touro University-California, Vallejo, CA | Bio-Techne, 614 McKinley Place NE, Minneapolis, MN 55413

Assessment of metabolic syndrome

- History: esp. FHx, BW, BF, ACE's
- Physical: esp. WC, BP
- Labs:
 - Fasting insulin
 - Lipid Profile, esp. TG:HDL (LDL not impt), ApoB
 - ALT
 - Uric Acid
 - Lactate
 - Fasting glucose, HbA_{1c} last thing to change!
 - Uncommon tests, e.g. hs-CRP, TNF- $\!\alpha$
- Do not draw leptin

REFRAMING THE DEBATE

REFRAMING THE DEBATE

Obesity doesn't CAUSE metabolic syndrome

Obesity is a MARKER for metabolic syndrome

REFRAMING THE DEBATE

Obesity doesn't CAUSE metabolic syndrome

Obesity is a MARKER for metabolic syndrome

OBESITY IS A "RED HERRING" VERYONE IS AT RISK OF METABOLIC SYNDROM

The three faces of metabolic syndrome

SQ fat — the "bucket" hypothesis

– get the insulin down (reduce CHO, sugar)

Visceral fat — the "stress" hypothesis

mindfulness, exercise, sleep

Liver fat — the "mainlining" hypothesis

reduce sugar, alcohol, branched chain amino acids, trans-fats

Collaborators

UCSF WATCH Clinic

Andrea Garber, Ph.D., R.D. Patrika Tsai, M.D., M.P.H. Emily Perito, M.D., M.P.H. Ayca Erkin-Cakmak, M.D., M.P.H.

Touro University Dept. of Biochemistry

Jean-Marc Schwarz, Ph.D. Alejandro Gugliucci, Ph.D.

SFGH Depts. of Medicine & Radiology

Susan Noworolski, Ph.D. Kathleen Mulligan, Ph.D.

Stanford Prevention Institute Sanjay Basu, M.D., Ph.D.

Union of Concerned Scientists Environmental Working Group Mt. Diablo Unified School District Dietitians for Professional Integrity

UCSF Clinical/Translational Science Institute

Laura Schmidt, Ph.D. Claire Brindis, Dr.P.H. Cristin Kearns, D.D.S. Stanton Glantz, M.D.

UC Hastings College of the Law

David Faigman, J.D. Marsha Cohen, J.D.

UCLA Resnick Center for Food Policy and Obesity Michael Roberts, J.D.

Diana Winters, J.D.

UC Berkeley Dept. of Nutr. Sciences

Pat Crawford, R.D., Ph.D. Kristine Madsen, M.D., M.P.H. Lorene Ritchie, Ph.D.

Guggenheim Partners

Stefano Natella